If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+5y-70=0
a = 3; b = 5; c = -70;
Δ = b2-4ac
Δ = 52-4·3·(-70)
Δ = 865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{865}}{2*3}=\frac{-5-\sqrt{865}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{865}}{2*3}=\frac{-5+\sqrt{865}}{6} $
| 61=9c+7 | | w−–2=12 | | -3(m+1)=4m+1 | | 7(4n+5)-6(7n-4)=-25 | | 44+0.9x=35+0.6x | | v-(-56)=-8 | | 2x(+9)=40 | | 4=2+3(j+2) | | 49=2x-1 | | -4w=800 | | f(2)=3(2)+12 | | 6x+35+9x=15(4+x)-25 | | v-(-9)=-12 | | 4+3x=5x-1 | | 5(x−7)=10 | | 2(k-1)+3(k+1)=6k+3 | | 4(7+6p)-8(p-4)=-68 | | v-(-2)=7 | | 42+y-y^2=0 | | 11=-5+3x | | 3/4z+4=12 | | 5( | | 4x+3/9=5 | | 11+1/4x=-5 | | 47=-3+10p | | 6(1-x)-3(x-7)=9 | | f(2)=6+12 | | 90+9x=50+30x | | f(8)=24+12 | | f(5)=15+12 | | f(10)=30+12 | | x/6=80 |